您选择的条件: LIU Xuejun
  • Contrasting effects of nitrogen addition on litter decomposition in forests and grasslands in China

    分类: 地球科学 >> 地理学 提交时间: 2021-08-06 合作期刊: 《干旱区科学》

    摘要: Nitrogen (N) addition has profound impacts on litter-mediated nutrient cycling. Numerous studies have reported different effects of N addition on litter decomposition, exhibiting positive, negative, or neutral effects. Previous meta-analysis of litter decomposition under N addition was mainly based on a small number of samples to allow comparisons among ecosystem types. This study presents the results of a meta-analysis incorporating data from 53 published studies (including 617 observations) across forests, grasslands, wetlands, and croplands in China, to investigate how environmental and experimental factors impact the effects of N addition on litter decomposition. Averaged across all of the studies, N addition significantly slows litter decomposition by 7.02%. Considering ecosystem types, N addition significantly accelerates litter decomposition by 3.70% and 11.22% in grasslands and wetlands, respectively, clearly inhibits litter decomposition by 14.53% in forests, and has no significant effects on litter decomposition in croplands. Regarding the accelerated litter decomposition rate in grasslands due to N addition, litter decomposition rate increases slightly with increasing rates of N addition. However, N addition slows litter decomposition in forests, but litter decomposition is at a significantly increasing rate with increasing amounts of N addition. The responses of litter decomposition to N addition are also influenced by the forms of N addition, experiential duration of N addition, humidity index, litter quality, and soil pH. In summary, N addition alters litter decomposition rate, but the direction and magnitude of the response are affected by the forms of N addition, the rate of N addition, ambient N deposition, experimental duration, and climate factors. Our study highlights the contrasting effects of N addition on litter decomposition in forests and grasslands. This finding could be used in biogeochemical models to better evaluate ecosystem carbon cycling under increasing N deposition due to the differential responses of litter decomposition to N addition rates and ecosystem types.

  • Atmospheric deposition of inorganic nitrogen semi-arid grassland of Inner Mongolia, China

    分类: 地球科学 >> 地理学 提交时间: 2017-11-07 合作期刊: 《干旱区科学》

    摘要: Due to increasing global demand fox crop production and energy use, more and more reactive nitrogen (Nx) has been generated and emitted to the environment. 11s a result, global atmospheric nitrogen (N) deposition has tripled since the industrial revolution and the ecological environment and human health have been harmed. In this study we measured dry and wet/bulk N deposition from July 2013 to December 2015 in a semi-arid grassland of Duolun County Inner Mongolia, China. The samples of dry and wet/bulk N deposition were collected monthly with a DELT11 (DEnudex fox Long Texm 1ltmosphexic sampling system and with Gxadko passive samplers and a precipitation gauge. The measured results show that the annual mean